The mouse muscle creatine kinase promoter faithfully drives reporter gene expression in transgenic Xenopus laevis.

نویسندگان

  • Wayland Lim
  • Eric S Neff
  • J David Furlow
چکیده

Developing Xenopus laevis experience two periods of muscle differentiation, once during embryogenesis and again at metamorphosis. During metamorphosis, thyroid hormone induces both muscle growth in the limbs and muscle death in the tail. In mammals, the muscle creatine kinase (MCK) gene is activated during the differentiation from myoblasts to myocytes and has served as both a marker for muscle development and to drive transgene expression in transgenic mice. Transcriptional control elements are generally highly conserved throughout evolution, potentially allowing mouse promoter use in transgenic X. laevis. This paper compares endogenous X. laevis MCK gene expression and the mouse MCK (mMCK) promoter driving a green fluorescent protein reporter in transgenic X. laevis. The mMCK promoter demonstrated strong skeletal muscle-specific transgene expression in both the juvenile tadpole and adult frog. Therefore, our results clearly demonstrate the functional conservation of regulatory sequences in vertebrate muscle gene promoters and illustrate the utility of using X. laevis transgenesis for detailed comparative study of mammalian promoter activity in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression Pattern of the Synthetic Pathogen-Inducible Promoter (SynP-FF) in the Transgenic Canola in Response to Sclerotinia sclerotiorum

Sclerotinia sclerotiorum is a phytopathogenic fungus which causes serious yield losses in canola. A pathogen inducible-promoter can facilitate the production of Sclerotinia-resistant transgenic canola plants. Inthis study, the “gain of function approach” was adopted for the construction of a pathogen-inducible promoter.The synthetic promoter technique was used, which involved the in...

متن کامل

A conserved MRF4 promoter drives transgenic expression in Xenopus embryonic somites and adult muscle.

The muscle regulatory factor MRF4 is expressed in both embryonic and adult vertebrate skeletal muscle cells. In mammals the MRF4 gene has a complex cis-regulatory structure, with many kilobases (kb) of upstream sequence required for embryonic expression in transgenic mice. Here, initial functional comparison between Xenopus and mammalian MRF4 genes revealed that 610 base pairs (bp) of the XMRF4...

متن کامل

Integrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis

Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...

متن کامل

Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin.

Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or withou...

متن کامل

Muscle creatine kinase/SV40 hybrid promoter for muscle-targeted long-term transgene expression.

Gene therapy for congenital protein deficiencies requires lifelong expression of a deficient protein. Current gene therapy approaches preferentially employ the strong cytomegalovirus (CMV) promoter/enhancer or its derivative CAG promoter; however, these promoters provide only temporary transgene expression. To create a promoter that enables long-lasting expression in muscle, hybrid promoters we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological genomics

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 2004